
HE COMPLETE set of instructions for making an organism is called its genome. It contains the master blueprint for all cellular structures and activities for the lifetime of the cell or organism. Found in every nucleus of a person's many trillions of cells, the human genome consists of tightly coiled threads of deoxyribonucleic acid (DNA) and associated protein molecules, organized into structures called chromosomes.
Some DNA details : If unwound and tied together, the strands of DNA would stretch more than 5 feet but would be only 50 trillionths of an inch wide. For each organism, the components of these slender threads encode all the information necessary for building and maintaining life, from simple bacteria to remarkably complex human beings. Understanding how DNA performs this function requires some knowledge of its structure and organization.
DNA

n humans, as in other higher organisms, a DNA molecule consists of two strands that wrap around each other to resemble a twisted ladder whose sides, made of sugar and phosphate molecules, are connected by rungs of nitrogen-containing chemicals called bases. Each strand is a linear arrangement of repeating similar units called nucleotides, which are each composed of one sugar, one phosphate, and a nitrogenous base. Four different bases are present in DNA: adenine (A), thymine (T), cytosine(C), and guanine (G). The particular order of the bases arranged along the sugar-phosphate backbone is called the DNA sequence; the sequence specifies the exact genetic instructions required to create a particular organism with its own unique traits.
The two DNA strands are held together by weak bonds between the bases on each strand, forming base pairs (bp). Genome size is usually stated as the total number of base pairs; the human genome contains roughly 3 billion bp.
Each time a cell divides into two daughter cells, its full genome is duplicated; for humans and other complex organisms, this duplication occurs in the nucleus. During cell division the DNA molecule unwinds and the weak bonds between the base pairs break, allowing the strand to separate.